
The Electronic Spectrum and Photolysis of S-Nitrosotoluene- α -thiol

By JACK BARRETT, D. F. DEBENHAM, and JUDITH GLAUSER

(Department of Chemistry and Biology, Hatfield College of Technology, Hatfield, Herts.)

S-NITROSOTOLUENE-α-THIOL, C₆H₅·CH₂·SNO, was prepared by the method reported by Saville.¹ The compound in dilute $(4 \times 10^{-2} M)$ hexane solution was found to be thermally stable at 25° over a period of weeks. 3650Å-radiation caused the decomposition of the compound, the only products being nitric oxide and dibenzyl disulphide.

The electronic spectrum of S-nitrosotoluene- α thiol in hexane solution was measured and is shown in the Figure. The absorption at $\lambda_{max} =$

The electronic spectrum of S-nitrosotoluene- α -thiol in hexane solution

5600 Å (ϵ , 26) for which the oscillator strength, f, is 2×10^{-4} , may be assigned to an $n_N \rightarrow \pi^*$ transition. A similar assignment has been made² for the absorption at 5988 Å of S-nitroso-2-methylpropane-2-thiol. The shoulder at 5300 Å can be attributed to the existence of two rotational isomers of the molecule as have been shown to exist in the analogous alkyl nitrite.³ The band is not photochemically active.

The absorption at $\lambda_{\max} = 3400$ Å (ϵ , 1030) with $f = 2.7 \times 10^{-2}$, is responsible for the photoactivity of the molecule. It is assigned to an $n_0 \rightarrow \pi^*$ transition. The $\pi \rightarrow \pi^*$ transition is in the benzenoid region at 2200 Å ($\epsilon \sim 10^4$).

- L. H. Piette and W. A. Anderson, J. Chem. Phys., 1959, 30, 899.
 W. A. Pryor, "Mechanisms of Sulphur Reactions," McGraw-Hill series in Advanced Chemistry, 1962, p. 51.

The result of the irradiation of S-nitrosotoluene- α -thiol at 3650 Å would be the excitation of an electron from the pure p-lone-pair orbital on the oxygen atom to a π -orbital which would be antibonding with respect to the nitrogen and oxygen atoms. The absorption of 3650 Å-radiation causes excitation to the extent of 79 kcal. mole⁻¹, this being in excess of the calculated sulphur-nitrogen bond dissociation energy of 52 kcal. mole-1 and sufficient to cause the fission of this bond. By the homolytic fission of the sulphur-nitrogen bond the orbital on the nitrogen atom containing a single electron can be used, together with the p-orbital on the oxygen atom which also contains one electron, to form a second π -bond between the nitrogen and oxygen atoms. Thus formed, the nitric oxide would be in its electronic ground state. These processes can be formulated as:

RSNO (R = Benzyl)
$$\xrightarrow{h_v}$$
 RSNO* (1)

$$RSNO^* \rightarrow RS + NO$$
 (2)

Evidence for thiyl radical production is that the monomers acrylonitrile and methyl methacrylate reduce the quantum yield for RSNO disappearance from 0.8 to a limiting value of 0.4 and in doing so become polymerised. These observations are consistent with the mechanism for the photolysis of reactions (1) and (2) followed by:

$$RS + RSNO \rightarrow RSSR + NO$$
 (3)

Thiyl radicals are known to react rapidly with sulphur-sulphur bonds⁴ and there seems to be no reason to expect their reaction with sulphurnitrogen bonds to be very different.

S-Nitroso-derivatives of the following thiols have been prepared and undergo similar photolysis: n-hexanethiol, 2-methylpentane-4-thiol, 2-methylcyclohex-3-enethiol, propanethiol, 2-methylpentane-2-thiol and 2-methylpropane-2-thiol.

Some support for the argument that the electronic changes occurring subsequently to an $n_0 \rightarrow \pi^*$ transition, which so conveniently result in a thiyl radical and the electronic ground state of nitric oxide, are a major factor in producing

¹ B. Saville, Analyst, 1958, 83, 660. ² G. Kreze and U. Uhlich, Chem. Ber., 1959, 92, 1048.

NUMBER 12, 1965

high quantum yields in these photolyses comes from a study of the photochemistry of the analogous nitrites and N-nitroso-compounds. Bamford⁵ reports that N-nitrosodimethylamine and N-nitrosodiethylamine have quantum yields for decomposition at 3650 Å of only 0.01. It is known⁶ that 3650 Å-radiation has no effect on N-nitrosodibenzylamine. In these cases the radiation would cause $n_{\rm N} \rightarrow \pi^*$ transitions⁷ and in spite of the fact that there would be ample energy to break the nitrogen-nitrogen bond there would have to be a major electronic rearrangement in order to produce nitric oxide in its electronic ground state. This limitation also applies to the photolysis of nitrites at 3650 Å and these do involve very low quantum yields, e.g. for the photolysis of t-butyl nitrite⁸ $\phi = 0.08$. There are, however, some exceptions in the case of nitrite photolyses, these being those instances where the alkoxy-radical can undergo the Barton reaction⁹ effectively or can abstract a hydrogen atom from a solvent molecule.

(Received, May 4th, 1965.)

- ⁷ S. F. Mason, Quart. Rev., 1961, 15, 287. ⁸ H. W. Thompson and F. S. Dainton, Trans. Faraday Soc., 1937, 33, 1546.
- ⁹ M. Akhtar, *Adv. Photochem.*, 1964, 2, 263.

⁵ C. H. Bamford, J. Chem. Soc., 1939, 12.

⁶ J. Barrett, L. H. Fitzgibbons, and P. J. N. Young, unpublished observations.